New arcs in projective Hjelmslev planes over Galois rings

نویسندگان

  • Michael Kiermaier
  • Axel Kohnert
چکیده

It is known that some good linear codes over a finite ring (R-linear codes) arise from interesting point constellations in certain projective geometries. For example, the expurgated Nordstrom-Robinson code, a nonlinear binary [14, 6, 6]-code which has higher minimum distance than any linear binary [14, 6]-code, can be constructed from a maximal 2-arc in the projective Hjelmslev plane over Z4. We report on a computer search for maximal arcs in projective Hjelmslev planes over proper Galois rings of order ≤ 27. The used method is to prescribe a group of automorphisms which shrinks the problem to a computationally feasible size. The resulting system of Diophantine linear equations is solved by lattice point enumeration. We improve many of the known lower bounds on the size of maximal arcs. Furthermore, the Gray image of one of the constructed arcs yields a quaternary [504, 6, 376]-code. This code has higher minimal distance than any known F4-linear [504, 6]-code.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sets of Type (d1, d2) in projective Hjelmslev planes over Galois Rings

In this paper we construct sets of type (d1, d2) in the projective Hjelmslev plane. For computational purposes we restrict ourself to planes over Zps with p a prime and s > 1, but the method is described over general Galois rings. The existence of sets of type (d1, d2) is equivalent to the existence of a solution of a Diophantine system of linear equations. To construct these sets we prescribe ...

متن کامل

On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic

In this paper, we prove that maximal (k, 2)-arcs in projective Hjelmslev planes over chain rings R of nilpotency index 2 exist if and only if charR = 4. © 2005 Elsevier Inc. All rights reserved.

متن کامل

New complete 2 - arcs in the uniform projective Hjelmslev planes over chain rings of order 25

In this paper a 2-arc of size 21 in the projective Hjelmslev plane PHG(2,Z25) and a 2-arc of size 22 in PHG(2,F5[X]/(X)) are given. Both arcs are bigger than the 2-arcs previously known in the respective plane. Furthermore, we will give some information on the geometrical structure of the arcs.

متن کامل

Optimal Arcs in Hjelmslev Spaces of Large Dimension

In this paper, we present various results on arcs in projective threedimensional Hjelmslev spaces over finite chain rings of nilpotency index 2. A table is given containing exact values and bounds for projective arcs in the geometries over the two chain rings with four elements.

متن کامل

Blocking sets of Rédei type in projective Hjelmslev planes

The aim of this paper is to generalize the notion of a Rédei type blocking set to projective Hjelmslev planes. In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have been classified in [1, 6]. If q = pr there are exactly r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007