New arcs in projective Hjelmslev planes over Galois rings
نویسندگان
چکیده
It is known that some good linear codes over a finite ring (R-linear codes) arise from interesting point constellations in certain projective geometries. For example, the expurgated Nordstrom-Robinson code, a nonlinear binary [14, 6, 6]-code which has higher minimum distance than any linear binary [14, 6]-code, can be constructed from a maximal 2-arc in the projective Hjelmslev plane over Z4. We report on a computer search for maximal arcs in projective Hjelmslev planes over proper Galois rings of order ≤ 27. The used method is to prescribe a group of automorphisms which shrinks the problem to a computationally feasible size. The resulting system of Diophantine linear equations is solved by lattice point enumeration. We improve many of the known lower bounds on the size of maximal arcs. Furthermore, the Gray image of one of the constructed arcs yields a quaternary [504, 6, 376]-code. This code has higher minimal distance than any known F4-linear [504, 6]-code.
منابع مشابه
Sets of Type (d1, d2) in projective Hjelmslev planes over Galois Rings
In this paper we construct sets of type (d1, d2) in the projective Hjelmslev plane. For computational purposes we restrict ourself to planes over Zps with p a prime and s > 1, but the method is described over general Galois rings. The existence of sets of type (d1, d2) is equivalent to the existence of a solution of a Diophantine system of linear equations. To construct these sets we prescribe ...
متن کاملOn maximal arcs in projective Hjelmslev planes over chain rings of even characteristic
In this paper, we prove that maximal (k, 2)-arcs in projective Hjelmslev planes over chain rings R of nilpotency index 2 exist if and only if charR = 4. © 2005 Elsevier Inc. All rights reserved.
متن کاملNew complete 2 - arcs in the uniform projective Hjelmslev planes over chain rings of order 25
In this paper a 2-arc of size 21 in the projective Hjelmslev plane PHG(2,Z25) and a 2-arc of size 22 in PHG(2,F5[X]/(X)) are given. Both arcs are bigger than the 2-arcs previously known in the respective plane. Furthermore, we will give some information on the geometrical structure of the arcs.
متن کاملOptimal Arcs in Hjelmslev Spaces of Large Dimension
In this paper, we present various results on arcs in projective threedimensional Hjelmslev spaces over finite chain rings of nilpotency index 2. A table is given containing exact values and bounds for projective arcs in the geometries over the two chain rings with four elements.
متن کاملBlocking sets of Rédei type in projective Hjelmslev planes
The aim of this paper is to generalize the notion of a Rédei type blocking set to projective Hjelmslev planes. In what follows, we focus on Hjelmslev planes over chain rings of nilpotencey index 2, i.e. chain rings with rad R 6= (0) and (rad R)2 = (0). Thus we have always |R| = q2, where R/ rad R ∼= Fq. Chain rings with this property have been classified in [1, 6]. If q = pr there are exactly r...
متن کامل